Latihan
Tentukan
Koordinat titik puncak dan parabola terbuka ke atas dan kebawah
Gambarkanlah Parabolanya
!
1. Y
= x2 – 4
(x -2) (x+2)
x – 2 = 0 x+2 = 0
x = 2 x = -2
(2 , 0) (-2 , 0)
Titik sumbu y
y = x2 – 4
x = 0 -> y = 4
(0 , 4)
Titik Puncak
x = -b ÷ 2.a y = x2 – 4
x = -0 ÷ 2.1 y = 02 - 4
x = 0 ÷ 2 y = -4
x = 0
(0 , 4)
Gambar Parabola soal no 1
2. y = 16 – 4x2
(-2x + 4) (2x + 4)
-2x + 4 =0 2x + 4 = 0
x = -2 x = 2
(-2 , 0) (2 , 0)
Titik Sumbu Y
y = 16 – 4x2
x=0 -> y = 16
(0 , 16)
Titik Puncak
x = -b ÷ 2.a Y = 16 – 4x2
x = -0 ÷ 2.4 y = 16 – 4.0
x = 0 ÷ 8 y = 16
x = 0
(0 , 16)
Gambar Parabola soal No 2
3. Y
= x2 – 4x +4
a = 1 b = -4 c = 4
(x
- 2 ) (x-2 )
x - 2 = 0 x - 2 = 0
x = 2 x = 2
(2 , 0) (2 , 0)
Titik sumbu Y
y = x2 – 4x +4
x = 0 -> y=4
(0
, 4)
Titik Puncak
x = -b ÷ 2.a y = x2 – 4x + 4
x = 4 ÷ 2.1 y = 22 – 4.2 + 4
x = 4 ÷ 2 y = 4 – 8 + 4
x = 2 y = 0
(2
, 0)
Gambar Parabola soal no 3
4. y = 4x2 -8x -12
a = 4 b = -8 c -12
(2x + 2 ) (2x – 6)
2x + 2 = 0 2x – 6 = 0
x = 1 x = -3
(1 , 0) (-3 , 0)
Titik Sumbu Y
y = 4x2 – 8x – 12
x
= 0 -> y = -12
(0 , -12)
Titik Puncak
x = -b ÷ 2.a y = 4x2 – 8x - 12
x
= 8 ÷ 2.4 y = 4.12
– 8.1 -12
x = 8 ÷ 8 y = 4 – 8 - 12
x
= 1 y = -16
(1,
-16)
No comments:
Post a Comment